วันพุธที่ 12 กันยายน พ.ศ. 2555

สมการกำลังสอง


ในทางคณิตศาสตร์ สมการกำลังสอง (สมการควอดราติก) คือสมการของพหุนามตัวแปรเดียวที่มีดีกรีเท่ากับ 2 รูปแบบทั่วไปของสมการกำลังสองคือ
ax^2 + bx + c = 0 \!
เมื่อ a ≠ 0 (ถ้า a = 0 สมการนี้จะกลายเป็นสมการเชิงเส้น) ซึ่ง ab อาจเรียกว่าเป็นสัมประสิทธิ์ของ x2x ตามลำดับ ส่วน c คือสัมประสิทธิ์คงตัว บางครั้งเรียกว่าพจน์อิสระหรือพจน์คงตัว ฟังก์ชันของสมการกำลังสองสามารถวาดกราฟบนระบบพิกัดคาร์ทีเซียนได้รูปเส้นโค้งพาราโบลา

สูตรกำลังสอง


สมการกำลังสองใดๆ ที่มีสัมประสิทธิ์เป็นจำนวนจริง (หรือจำนวนเชิงซ้อน) จะมีรากของสมการ 2 คำตอบเสมอ ซึ่งอาจจะเท่ากันก็ได้ โดยที่รากของสมการสามารถเป็นได้ทั้งจำนวนจริงหรือจำนวนเชิงซ้อน สามารถคำนวณได้จากสูตร
x = \frac{-b \pm \sqrt {b^2-4ac}}{2a}
ซึ่งเครื่องหมายบวกและลบเป็นการแทนความหมายของทั้งสองคำตอบ ได้แก่
x_+ = \frac{-b + \sqrt {b^2-4ac}}{2a}; \quad x_- = \frac{-b - \sqrt {b^2-4ac}}{2a}
ดังนั้นค่าของสมการจะเท่ากับฟิวชั่นของสมการ

ดิสคริมิแนนต์


จากสูตรด้านบน นิพจน์ที่อยู่ภายใต้เครื่องหมายรากที่สอง
\Delta
จะเรียกว่า ดิสคริมิแนนต์ (discriminant) ของสมการกำลังสอง
ดิสคริมิแนนต์เป็นตัวบ่งบอกว่าสมการกำลังสองจะมีคำตอบของสมการเป็นประเภทใดประเภทหนึ่ง ดังต่อไปนี้
  • ถ้าดิสคริมิแนนต์เป็นค่าบวก ดังนั้นจะมีรากของสมการ 2 ค่าที่แตกต่างกัน และเป็นจำนวนจริงทั้งคู่ สำหรับกรณีที่สัมประสิทธิ์เป็นจำนวนเต็ม และดิสคริมิแนนต์เป็นกำลังสองสมบูรณ์ ดังนั้นรากของสมการจะเป็นจำนวนตรรกยะ ส่วนในกรณีอื่นจะเป็นจำนวนอตรรกยะ
  • ถ้าดิสคริมิแนนต์เป็นศูนย์ ดังนั้นจะมีรากของสมการ 2 ค่าที่เท่ากัน (หรือมีเพียงค่าเดียว) และเป็นจำนวนจริง รากของสมการนี้จะมีค่าเท่ากับ
    x = -\frac{b}{2a} \!
  • ถ้าดิสคริมิแนนต์เป็นค่าลบ จะไม่มีคำตอบเป็นจำนวนจริง แต่จะเป็นจำนวนเชิงซ้อน 2 จำนวนที่ต่างกัน ซึ่งเป็นสังยุคของกันและกัน นั่นคือ
    x
เมื่อ i คือหน่วยจินตภาพที่นิยามโดย i2 = −1

การแยกตัวประกอบ


พจน์ x - r \! จะเรียกว่าเป็นตัวประกอบของพหุนาม ax^2 + bx + c \! ก็ต่อเมื่อ r เป็นคำตอบของสมการกำลังสอง ax^2 + bx + c = 0 \!
ซึ่งจากสูตรกำลังสอง สามารถแยกตัวประกอบของพหุนามได้เป็น
ax^2 + bx + c = a \left( x - \frac{-b + \sqrt {b^2-4ac}}{2a} \right) \left( x - \frac{-b - \sqrt {b^2-4ac}}{2a} \right)
ในกรณีพิเศษ เมื่อรากของสมการกำลังสองมีเพียงค่าเดียว (คือคำตอบทั้งสองเท่ากัน) พหุนามกำลังสองจะสามารถแยกตัวประกอบได้เป็น
ax^2+bx+c = a \left( x + \frac{b}{2a} \right)^2 \!


การแยกตัวประกอบพหุนามกำลังสอง

พหุนามกำลังสองใดๆ บนจำนวนเชิงซ้อน (คือพหุนามที่อยู่ในรูป ax^2+bx+c เมื่อ a,b,c \in \mathbb{C}) สามารถแยกตัวประกอบให้เป็นนิพจน์ที่อยู่ในรูป a (x - \alpha) (x - \beta) \! เมื่อ \alpha และ \beta คือรากของพหุนาม ซึ่งคำนวณได้จากสูตรกำลังสองดังนี้
ax^2 + bx + c = a (x - \alpha) (x - \beta) = a\left (x - \left (\frac{-b + \sqrt{b^2-4ac}}{2a}\right) \right) \left (x - \left (\frac{-b - \sqrt{b^2-4ac}}{2a}\right) \right)

[แก้]พหุนามที่สามารถแยกได้บนจำนวนเต็ม

บางครั้งพหุนามกำลังสองสามารถแยกออกได้เป็นทวินาม (binomial) สองตัวด้วยสัมประสิทธิ์ที่เป็นจำนวนเต็ม โดยไม่จำเป็นต้องใช้สูตรกำลังสองในการคำนวณ ซึ่งมีประโยชน์สำหรับการหารากของสมการกำลังสองโดยที่พหุนาม
ax^2+bx+c\!
สามารถแยกได้เป็น
 (mx+p) (nx+q) \!
เมื่อ
mn = a\!
pq = c\!
pn + mq = b\!
จากนั้นจึงให้ทวินามแต่ละตัวเท่ากับศูนย์ แล้วคำนวณหาค่าของ x เพื่อหารากของสมการกำลังสอง

[แก้]ไตรนามกำลังสองสมบูรณ์


แผนภาพที่พิสูจน์ว่า
(a+b) ² = a²+2ab+b²
พหุนามกำลังสองบางชนิดสามารถแยกตัวประกอบออกได้เป็นทวินามที่เหมือนกัน พหุนามนั้นเรียกว่า ไตรนามกำลังสองสมบูรณ์ หรือเพียงแค่ กำลังสองสมบูรณ์ ซึ่งพหุนามดังกล่าวสามารถแยกได้ดังนี้
a^2 + 2ab + b^2 = (a + b) (a + b) = (a + b) ^2\!
a^2 - 2ab + b^2 = (a - b) (a - b) = (a - b) ^2\!

[แก้]ผลบวกและผลต่างกำลังสอง

ดูบทความหลักที่ ผลต่างกำลังสอง
การแยกตัวประกอบทางพีชคณิตอีกอย่างหนึ่งเรียกว่า ผลต่างกำลังสอง มีสูตรดังนี้
a^2 - b^2 = (a-b) (a+b) \!
ซึ่งเป็นจริงสำหรับทั้งสองพจน์ ไม่ว่าจำนวนเหล่านั้นจะเป็นกำลังสองสมบูรณ์หรือไม่ ถ้าพจน์ทั้งสองลบกัน ก็ให้แทนด้วยสูตรดังกล่าวได้ทันที แต่ถ้าพจน์ทั้งสองบวกกัน ทวินามที่ได้จากการแยกตัวประกอบจะต้องมีจำนวนจินตภาพเข้ามาเกี่ยวข้อง ซึ่งแสดงได้ดังนี้
a^2 + b^2 = (a+bi) (a-bi) \!
ตัวอย่างเช่น 4x^2 + 49 สามารถแยกได้เป็น  (2x + 7i) (2x - 7i)  เป็นต้น

[แก้]การแยกตัวประกอบพหุนามอื่น ๆ

[แก้]ผลบวกและผลต่างกำลังสาม

สูตรสำหรับการแยกตัวประกอบของผลบวกและผลต่างกำลังสามเป็นดังนี้ ผลบวกสามารถแยกตัวประกอบเป็น
 a^3 + b^3 = (a + b)(a^2 - ab + b^2)\!
และผลต่างสามารถแยกตัวประกอบเป็น
 a^3 - b^3 = (a - b)(a^2 + ab + b^2)\!
เช่น x3 − 103 (or x3 − 1000) สามารถแยกตัวประกอบเป็น (x − 10)(x2 + 10x + 100)

สัมประสิทธิ์

สัมประสิทธิ์ของพหุนามกำลังสองมักเป็นจำนวนจริง หรือจำนวนเชิงซ้อน แต่ในความเป็นจริงแล้วพหุนามสามารถนิยามบนริงใด ๆ ได้

[แก้]ตัวแปร

พหุนามกำลังสองอาจมีตัวแปรเพียงตัวแปรเดียว หรือหลายตัวแปรก็ได้

[แก้]พหุนามกำลังสองตัวแปรเดียว

พหุนามกำลังสองตัวแปรเดียวใด ๆ สามารถเขียนในรูป
ax^2 + bx + c\!
เมื่อ x เป็นตัวแปร และ abc เป็นสัมประสิทธิ์

[แก้]พหุนามกำลังสองสองตัวแปร

พหุนามกำลังสองสองตัวแปรใด ๆ สามารถเขียนได้ในรูป
ax^2 + bxy + cy^2 + dx + ey + f\!
โดยที่ x และ y เป็นตัวแปร และ a , b , c , d , e , f เป็นสัมประสิทธิ์ พหุนามกำลังสองสองตัวแปรเป็นรากฐานของการศึกษาภาคตัดกรวย

นิยาม

[แก้]การสร้างจากจำนวนตรรกยะ

จำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่นๆดูที่ construction of real numbers (การสร้างจำนวนจริง)

[แก้]วิธีสัจพจน์

ให้ R แทนเซตของจำนวนจริงทั้งหมด แล้ว
คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ
จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน

[แก้]คุณสมบัติ

[แก้]ความบริบูรณ์

เหตุผลหลักในการแนะนำจำนวนจริงก็เพราะว่าจำนวนจริงมีลิมิต พูดอย่างเป็นหลักการแล้ว จำนวนจริงมีความบริบูรณ์ (โดยนัยของ ปริภูมิอิงระยะทาง หรือ ปริภูมิเอกรูป ซึ่งต่างจากความบริบูรณ์เดเดคินท์เกี่ยวกับอันดับในส่วนที่แล้ว) มีความหมายดังต่อไปนี้
ลำดับ (xn) ของจำนวนจริงจะเรียกว่า ลำดับโคชี ถ้าสำหรับ ε > 0 ใดๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − xm| น้อยกว่า ε โดยที่ n และ m มากกว่า N และอาจกล่าวได้ว่าลำดับเป็นลำดับโคชีโคชีถ้าสมาชิก xn ของมันในที่สุดเข้าใกล้กันเพียงพอ
ลำดับ (xnลู่เข้าสู่ลิมิต x ถ้าสำหรับ ε > 0 ใดๆมีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − x| น้อยกว่า ε โดยที่ n มากกว่า N และอาจกล่าวได้ว่าลำดับมีลิมิต x ถ้าสมาชิกของมันในที่สุดเข้าใกล้ x เพียงพอ
เป็นเรื่องง่ายที่จะเห็นว่าทุกลำดับลู่เข้าเป็นลำดับโคชี ข้อเท็จจริงที่สำคัญหนึ่งเกี่ยวกับจำนวนจริงคือบทกลับของมันก็เป็นจริงเช่นกัน :
ลำดับโคชีทุกลำดับของจำนวนจริงลู่เข้า
นั่นก็คือ จำนวนจริงนั้นบริบูรณ์
สังเกตว่าจำนวนตรรกยะนั้นไม่บริบูรณ์ เช่น ลำดับ (1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) เป็นลำดับโคชีแต่ไม่ลู่เข้าสู่จำนวนตรรกยะจำนวนใดจำนวนหนึ่ง (ในทางกลับกัน ในระบบจำนวนจริง มันลู่เข้าสู่รากที่สองของ 2)
การมีอยู่ของลิมิตของลำดับโคชีทำให้แคลคูลัสใช้การได้ รวมไปถึงการประยุกต์มากมายของมันด้วย การทดสอบเชิงตัวเลขมาตรฐานเพื่อระบุว่าลำดับนั้นมีลิมิตหรือไม่คือการทดสอบว่ามันเป็นลำดับโคชีหรือไม่ ถ้าเราไม่ทราบลิมิตเหล่านั้นล่วงหน้า
ตัวอย่างเช่น อนุกรมพื้นฐานของฟังก์ชันเลขชี้กำลัง
\mathrm{e}^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
ลู่เข้าสู่จำนวนจริงจำนวนหนึ่งเพราะว่าสำหรับทุกค่าของ x ผลรวม
\sum_{n=N}^{M} \frac{x^n}{n!}
สามารถทำให้มีค่าน้อยลงเพียงพอโดยเลือก N ที่มีค่ามากเพียงพอ นี่พิสูจน์ว่าลำดับนี้เป็นลำดับโคชี ดังนั้นเรารู้ว่าลำดับลู่เข้าแม้กระทั่งเราไม่รู้ว่าลิมิตคืออะไร


นิยาม

[แก้]ฟีลด์ของจำนวนเชิงซ้อน

ฟีลด์ของจำนวนเชิงซ้อน \mathbb{C} ประกอบด้วยเซตของคู่ลำดับ (a,b) ทั้งหมดโดยที่ a และ b เป็นจำนวนจริง และปฏิบัติการสองตัวคือ + (การบวก) และ \cdot (การคูณ) โดยปฏิบัติการทั้งมีนิยามดังต่อไปนี้
ให้ (a,b) และ (c,d) เป็นจำนวนเชิงซ้อนใดๆ
(a,b)+(c,d) = (a+c, b+d) \,
(a,b)\cdot(c,d) = (ac-bd, ad+bc) \,
เมื่อการบวก การลบ และการคูณภายในคู่ลำดับคือการบวก การลบ และการคูณจำนวนจริง
เซตของจำนวนเชิงซ้อนและปฏิบัติการทั้งสองมีสมบัติเป็นฟีลด์ กล่าวคือ
  • การบวกและการคูณมีสมบัติปิด การสลับที่ การเปลี่ยนกลุ่ม และการแจกแจง
  • มีเอกลักษณ์การบวกคือ (0,0)
  • มีเอกลักษณ์การคูณคือ (1,0)
  • อินเวอร์สการบวกของ z=(a,b) (เขียนแทนด้วย -z) คือ (-a,-b)
  • ถ้าหาก z = (a,b) \neq (0,0) อินเวอร์สการคูณของ z (เขียนแทนด้วย z^{-1}) คือ \left( \frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right)

[แก้]จำนวนเชิงซ้อนในฐานะปริภูมิเวกเตอร์และฟีลด์ต่อเติม

อนึ่ง เราอาจมองเซตของจำนวนเชิงซ้อนเป็นปริภูมิเวกเตอร์สองมิติบนเซตของจำนวนจริง เราสามารถใช้การบวกจำนวนเชิงซ้อนแทนการบวกเวกเตอร์ และการคูณด้วยสเกลาร์สามารถนิยามได้ดังต่อไปนี้
c(a,b) = (ca,cb) = (a,b)c \, เมื่อ c เป็นจำนวนจริงและ (a,b) เป็นจำนวนเชิงซ้อนใดๆ
ด้วยเหตุนี้เราได้ว่าฐานหลักหนึ่งของเซตของจำนวนเชิงซ้อนประกอบด้วยเวกเตอร์ (1,0) และ (0,1) กล่าวคือเราสามารถเขียนจำนวนเชิงซ้อนทุกตัวในรูปของผลรวมเชิงเส้นของเวกเตอร์ทั้งสอง:
 (a,b) = a(1,0) + b(0,1) \,
ตามความนิยม เรามักแปลความหมายของ (a,0) = a(1,0) ว่าเป็นจำนวนจริง a (ด้วยเหตุนี้เราจึงกล่าวว่าเซตจำนวนจริงเป็นสับเซตของเซตจำนวนเชิงซ้อน) และมักใช้สัญลักษณ์ i แทน (0,1)จำนวนเชิงซ้อน (a,b) จึงเขียนได้อีกแบบหนึ่งว่า a+bi ซึ่งเป็นที่นิยมใช้มากกว่าแบบคู่ลำดับ
จากนิยามการคูณจำนวนเชิงซ้อนข้างต้น เราได้ว่า i^2 = (-1,0) = -1 นั่นคือ i เป็นคำตอบของสมการ x^2 + 1 = 0 ซึ่งไม่สามารถหาคำตอบได้ในเซตของจำนวนจริง ดังนั้น เซตของจำนวนเชิงซ้อนจึงเป็นฟีลด์ต่อเติม (field extension) ของเซตของจำนวนจริงโดยการเพิ่มรากของพหุนาม x^2 +1 อีกนัยหนึ่ง เซตของจำนวนเชิงซ้อนคือริงผลหาร (quotient ring) ของริงพหุนาม \mathbb{R}[x] กับไอดีล (x^2+1) เขียนเป็นประโยคสัญลักษณ์ได้ว่า
\mathbb{C} = \mathbb{R}[x]/(x^2+1)

[แก้]สัญลักษณ์และคำศัพท์ที่เกี่ยวข้อง

[แก้]ส่วนจริงและส่วนจินตภาพ

ถ้า z = a+bi \, เราเรียก a ว่า ส่วนจริง ของ z เขียนแทนด้วยสัญลักษณ์ \Re(z) และเราเรียก b ว่า ส่วนจินตภาพ ของ z เขียนแทนด้วยสัญลักษณ์ \Im(z) เราเรียกจำนวนเชิงซ้อนที่มีส่วนจริงเป็น 0 และส่วนจินตภาพไม่เป็น 0 ว่าจำนวนจินตภาพ (imaginary number)

[แก้]สังยุคเชิงซ้อน

ถ้า z=a+bi\, เป็นจำนวนเชิงซ้อน สังยุคของ z คือ a-bi\, เราเขียนแทนสังยุคของ z ด้วย \bar{z} สังยุคของจำนวนเชิงซ้อนมีสมบัติสำคัญๆ ดังต่อไปนี้
  1. \overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}
  2. \overline{z_{1}z_{2}}=\bar{z}_{1}\bar{z}_{2}
  3. z + \bar{z} = 2\Re(z)
  4. z - \bar{z} = 2\Im(z)
เมื่อ zz_1z_2 เป็นจำนวนเชิงซ้อนใดๆ

[แก้]ขนาดของจำนวนเชิงซ้อน

ขนาดของจำนวนเชิงซ้อน z=a+bi \, เขียนแทนด้วย |z| คือจำนวนจริงบวก \sqrt{a^2 + b^2} เราอาจแปลความหมายของขนาดของจำนวนเชิงซ้อนได้ว่าเป็นความยาวของเส้นตรงที่ลากจากจุด (0,0) ไปยังจุด (a,b) บนระนาบคาร์ทีเชียน ขนาดของจำนวนเชิงซ้อนมีสมบัติสำคัญๆ ดังต่อไปนี้
  1. \left|z\right\vert=\left|\bar z\right\vert
  2. \left|z\right\vert^2=z \bar{z}
  3. \left|z_1z_2\right\vert=\left|z_1\right\vert\left|z_2\right\vert
  4. \left|z_1+z_2\right\vert\le\;\left|z_1\right\vert+\left|z_2\right\vert (อสมการสามเหลี่ยม)
  5. \left|z_1-z_2\right\vert\ge\;\big|\left|z_1\right\vert-\left|z_2\right\vert\big|
  6. \left|z\right\vert=0 ก็ต่อเมื่อ z=0\,
เมื่อ zz_1, และ z_2 เป็นจำนวนเชิงซ้อนใดๆ จากสมบัติข้อที่สองและการแทนจำนวนจริง a ด้วยจำนวนเชิงซ้อน (a,0) ทำให้เราได้ว่าถ้า z \neq 0
z^{-1} = \frac{\bar{z}}{|z|^2}

[แก้]ระนาบเชิงซ้อน

Complex.png
เรายังสามารถมองจำนวนเชิงซ้อนเป็นจุดหรือเวกเตอร์บนระนาบคาร์ทีเซียนสองมิติ และมักจะเรียกระนาบนี้ว่าระนาบเชิงซ้อน (complex plane) หรือผังของอาร์กานด์ ตามชื่อของ ชอง-โรแบร์ต อาร์กานด์ ผู้ค้นพบ
พิกัดคาร์ทีเซียนของจำนวนเชิงซ้อน z = a+bi \, คือ (a,b) ในขณะที่พิกัดเชิงขั้วคิอ (r,\varphi) \, เมื่อ r = |z| และ \varphi \, เป็นมุมที่เวกเตอร์ (a,b) ทำกับแกน x ในหน่วยเรเดียน เราเรียก \varphi \, ว่า อาร์กิวเมนต์ของ z และเขียนแทนด้วยสัญลักษณ์ \arg(z) สังเกตว่าจำนวนเชิงซ้อนที่มีอาร์กิวเมนต์ต่างกันเท่ากับผลคูณของจำนวนเต็มกับ 2\pi จะมีค่าเท่ากัน
สูตรของออยเลอร์ช่วยแสดงความสัมพันธ์ระหว่างพิกัดคาร์ทีเซียนและพิกัดเชิงขั้ว อีกทั้งยังช่วยให้เราสามารถเขียนจำนวนเชิงซ้อนได้อีกรูปแบบหนึ่งดังต่อไปนี้
z = a+bi = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}\,
และเรายังสามารถพิสูจน์ได้ว่า
r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1r_2e^{i(\varphi_1 + \varphi_2)} = r_1r_2(\cos (\varphi_1+\varphi_2) + i\sin(\varphi_1+\varphi_2))
และ
\frac{r_1 e^{i\varphi_1}}{r_2 e^{i\phi_2}} = \frac{r_1}{r_2}e^{i(\varphi_1 - \varphi_2)} = \frac{r_1}{r_2}(\cos (\varphi_1-\varphi_2) + i\sin(\varphi_1-\varphi_2))
เมื่อ r_2 \neq 0 ด้วยเหตุนี้เราจึงสามารถมองการคูณจำนวนเชิงซ้อนตัวหนึ่งๆ ว่าเป็นการหมุนและการยืด (หรือหด) เวกเตอร์ด้วยอาร์กิวเมนต์และขนาดของจำนวนเชิงซ้อนตัวนั้นตามลำดับ
การคูณด้วย i = e^{i\pi/2} จึงสมมูลกับการหมุนเวกเตอร์ 90 องศาทวนเข็มนาฬิกา สมการ ฉะนั้นเราสามารถเข้าใจความหมายของสมการ i^2 = -1 ได้อีกนัยหนึ่งว่า "การหมุน 90 องศาสองครั้งมีค่าเท่ากับการหมุน 180 องศา" หรือ "เมื่อหมุนเวกเตอร์ (0,1) ไป 90 องศา ผลลัพธ์ที่ได้คือเวกเตอร์ (-1,0)"

[แก้]สมบัติต่างๆ

[แก้]การเรียงลำดับ

\mathbb{C} ไม่เป็นฟีลด์อันดับ กล่าวคือเราไม่สามารถเรียงลำดับจำนวนเชิงซ้อนโดยที่การเรียงลำดับนั้นสอดคล้องกับการบวกและการคูณจำนวนเชิงซ้อนได้เลย

[แก้]ปริภูมิเวกเตอร์

อย่างที่ได้กล่าวไว้ข้างต้น \mathbb{C} เป็นปริภูมิเวกเตอร์สองมิติบน \mathbb{R} เราได้ว่าการแปลงเชิงเส้นบน \mathbb{R}  (\mathbb{R}-linear map) ทุกตัวจะสามารถเขียนได้ในรูป
f(z) = az + b\bar{z}
เมื่อ a และ b เป็นจำนวนเชิงซ้อนใดๆ เราได้ว่าฟังก์ชัน f_1(z) = a(z) เป็นการหมุนและการยืดเวกเตอร์ ส่วนฟังก์ชัน f_2(z) = b\bar{z} นั้นประกอบด้วยการหมุน การพลิก และการยืดเวกเตอร์ในฟังก์ชันเดียว สังเกตว่า f_1 เท่านั้นที่เป็นการแปลงเชิงเส้นบน \mathbb{C} และเป็นฟังก์ชันโฮโลมอร์ฟิก เราสามารถหาอนุพันธ์ของ f_2 ได้ในเซตของจำนวนจริง แต่อนุพันธ์นั้นไม่สอดคล้องกับสมการโคชี-รีมันน์

[แก้]สมบัติเชิงพีชคณิต

\mathbb{C} (หรือฟีลด์อื่นที่สมสัณฐานกับ C) จะมีลักษณะจำเพาะสามประการ ดังนี้
ด้วยเหตุนี้ \mathbb{C} จึงมีฟีลด์ย่อยแท้ที่สมสัณฐานกับตัวมันเองอยู่เป็นจำนวนมาก นอกจากนี้กาลอยด์กรุปของ \mathbb{C} บนเชตของจำนวนตรรกยะมีขนาดเท่ากับเซตกำลังของเซตของจำนวนจริง